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Long period biological timing, as deduced from a primate enamel formation rhythm termed the repeat interval (RI),
varies predictably with body size and primate life-history characteristics. RI is a manifestation of a fundamental
metabolic rhythm termed the Havers—Halberg oscillation (HHO). Because body size is highly associated with RI
(and the HHO), we assume that RI should also have relationships with primate tissue and organ masses that likely
covary with body size. We evaluate body mass and constituent tissue and organ masses, as well as basal metabolic
rate (BMR), for twelve primate taxa. Regressing RI against tissue, organ, and body masses, as well as BMR, we
find the relationships to be significant. Partial correlations controlling for the effects of either body mass or fat-free
body mass suggest that the significant associations that tissue and organ masses have with each other are likely
related to their dependence on body size in general. Body mass and most tissue masses approximate 1/4 scaling.
However, brain mass has a singularly high slope in relation to RI. The relatively slow growth of other tissue and
organ masses with increasing RI may provide ‘payment’ for the high mass specific metabolic rate of the brain.
© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 649-656.
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INTRODUCTION

Fundamental to an organism’s life history is its body
mass (Schmidt-Nielsen, 1984; Calder, 1996). In the
search for proximate mechanisms, it has been shown
that long period biological timing, as deduced from
the enamel formation rhythms evident in its micro-
anatomy, varies predictably with body size (Bromage
et al.,2009). Although it is well known that the enamel
structure of primates (and many other mammals)
manifests as a daily developmental event, a previously
enigmatic long period rhythm is also visible, known
as the stria of Retzius. The number of daily events
between adjacent striae of Retzius is termed the repeat
interval (RI), which ranges in primates from 2 to 11
days; the larger the primate, the longer its RI."

Through its influence on body size, RI is highly
related to all common primate life-history timing (e.g.
age at sexual maturity, lifespan) and mass character-
istics (e.g. neonatal body mass, adult brain weight),
together with basal and specific metabolic rates. One
life-history characteristic, oestrous length, is related
to RI only when examined independent of body size
(Bromage et al., 2012). The pattern of body size-
dependent and -independent characteristics aligns
with hypothalamic controls over anterior and poste-
rior pituitary function, respectively, suggesting that
long period biological timing is fundamental to a
metabolism-mediated regulation of primate life
history (Bromage et al., 2012). Given this key role, we
termed this period the Havers—Halberg oscillation
(HHO) (Bromage et al., 2009), in reference to Clopton
Havers, a 17th Century hard tissue anatomist
(Havers, 1691), and Franz Halberg, a long-time
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‘Another term soon to be promulgated in the literature is
‘repeat period’ (RP). Further, the biological process — or the
Havers—Halberg Oscillation — that this period represents
requires a new term to describe this category of rhythm, which
we call ‘multidien’, referring to a many-days rhythm.

explorer of long-period rhythms (Halberg et al., 1965).

It stands to reason that, through its relationship
with body size, RI (and the HHO) should also have
relationships with primate tissue and organ masses
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that contribute to (and thus likely covary with) body
size. Navarrete et al. (2012) recently compiled tissue
and organ masses for a variety of primates and other
mammals, and thus we aimed to determine the extent
to which RI would remain statistically tethered to the
body’s constituent parts.

MATERIALS AND METHODS

We evaluated the compilation of tissue, organ, and
body masses and basal metabolic rate (BMR; both
body mass derived, BMR-BM, and in relation to
oxygen consumed, BMR-O;) provided by Navarrete
et al. (2012) for primate taxa whose RI have been
reported previously (Bromage et al., 2012). Twelve
taxa satisfy the requirements (Table 1). Most life-
history traits associate together by allometric scaling
laws because they have been observed to scale with
body mass. We thus log-transformed all data.

Our first interest lay in regressing RI against tissue
and organ masses, body mass, fat-free body mass, and
BMR (Table 2), and in providing a measure of the
extent to which RI is an appropriate predictor vari-
able for these mass and metabolic variables.

Because RI has been previously shown to signifi-
cantly relate to primate body mass in a simple linear
fashion, we tested whether the same might be true for
RI and its relationships with tissue, organ, and body
masses, as well as BMR. As such, we took the residu-
als arising from the regression of primate RI versus
body mass against tissue, organ, and body masses, as
well as BMR.

Finally, our interest also lay in describing the
extent to which tissue and organ masses are inte-
grated, and thus we performed correlation matrices
on log-transformed and ranked log-transformed data
(Tables 3, 4), in addition to performing a series of
partial correlations, controlling for each variable.

All statistics were performed using SPSS, version
21 (IBM Corporation). Linear and multiple regres-
sions were executed using the least squares model
and reporting the Pearson product-moment correla-
tion coefficient (r) and its statistical significance (P),
as well as the adjusted coefficient of determination
(R?. Correlation reporting included r, P, and the
number of pairwise cases (V) or, in the case of partial
correlation, the reporting of degrees of freedom (d.f.).
P <0.050 was considered statistically significant.
Some tests were performed with and without primate
taxa having an RI of only 1day (RI =1) for reasons
explained previously Bromage et al. (2012).

RESULTS

Upon regressing RI against tissue, organ, and body
masses, as well as BMR, we find the relationships to

be globally high and significant (Table 2). Thus, as
previously reported for body mass, RI has very high
explanatory value with respect to predicting the
tissue and organ masses that contribute to body
mass.

Linear regressions of the residuals arising from the
regression of primate RI versus body mass against
tissue, organ, and body masses, as well as BMR,
failed to reveal any significant linear or nonlinear
association with fat-free body mass, organ and tissue
masses, or BMR (data not shown). This suggests that
there is a simple linear relationship between RI and
body, organ, and tissue mass, as well as BMR.

Correlation matrices of all variables, using either
the log-transformed data or ranked log-transformed
data, indicate that each variable is significantly and
highly correlated with every other variable (Tables 3,
4); only adipose depot failed to reveal associations
with BMR variables when using ranked data.

Partial correlations were performed, with each vari-
able serving as a control to remove their respective
effects on correlations between the other variables
(data not shown). Almost all of the tests performed
using all taxa revealed a broad lack of associations
between variables (i.e. correlation matrices with com-
paratively few significant and strong relationships).
However, when controlling for either RI or adipose
depot, many associations remain high and statisti-
cally significant.

DISCUSSION

Life history is an integrative field of study, which
concerns the pace and pattern of life. It includes such
developmental traits as gestation length, age at
weaning and sexual maturity, and lifespan, coupled
with various measures of size such as body mass,
birth weight, and brain weight. The coupling of devel-
opmental timing and size renders a life-history
matrix packaged so tightly together that no single
trait appears free to vary without corresponding rela-
tive changes in the others (Harvey & Clutton-Brock,
1985).

The present study has confirmed high degrees of
association between RI, tissue and organ masses,
body mass, fat-free body mass, and BMR, similar to
those found between RI and life-history characteris-
tics (Bromage et al., 2012) (Tables 3, 4). Nevertheless,
when all of the taxa reported in Table 1 are consid-
ered, and partial correlation matrices are calculated
controlling for the effects of either body mass or
fat-free body mass, few significant relationships
between variables endure. This would suggest that
the significant associations that tissue and organ
masses have with each other is likely related to their
dependence on body size in general.
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Table 2. Summary statistics of the regressions of log repeat interval (RI) with log-transformed body and tissue masses

and metabolic rate

Tests of association Regression variation™ R value P value R? value (adjusted) Slope
RI/Body mass (g) w/RI =1 0.882 <0.001 0.755 0.40
w/oRI=1 0.899 0.001 0.781 0.27
RI/Fat-free body mass (g) w/RI =1 0.883 <0.001 0.757 0.40
w/oRI =1 0.896 0.001 0.774 0.26
RI/Brain mass (g) w/RI =1 0.896 <0.001 0.782 0.49
w/oRI=1 0.829 0.011 0.635 0.31
RI/Heart mass (g) w/RI =1 0.879 <0.001 0.747 0.42
wioRI =1 0.858 0.003 0.699 0.28
RI/Lung mass (g) w/RI=1 0.862 <0.001 0.717 0.38
w/oRI=1 0.875 0.002 0.732 0.24
RI/Kidney mass (g) w/RI=1 0.829 0.001 0.657 0.47
w/oRI =1 0.811 0.008 0.609 0.28
RI/Liver mass (g) w/RI =1 0.786 0.002 0.579 0.44
w/oRI =1 0.792 0.011 0.575 0.25
RI/Digestive tract mass (g) w/RI =1 0.846 0.001 0.686 0.38
w/oRI =1 0.822 0.007 0.630 0.23
RI/Stomach mass (g) w/RI =1 0.850 <0.001 0.694 0.34
w/oRI =1 0.782 0.013 0.566 0.20
RI/Intestinal mass (g) w/RI=1 0.843 0.001 0.681 0.39
w/oRI=1 0.832 0.005 0.647 0.23
RI/Spleen mass (g) w/RI =1 0.835 0.001 0.667 0.34
wioRI =1 0.750 0.020 0.500 0.19
RI/Visceral mass (g) w/RI =1 0.834 0.001 0.666 0.41
w/oRI=1 0.827 0.006 0.638 0.25
RI/Adipose depot (g) w/RI=1 0.753 0.005 0.524 0.34
wioRI =1 0.840 0.005 0.683 0.23
RI/ BMR-BM w/RI=1 0.952 0.001 0.888 0.47
w/oRI=1 0.978 0.022 0.934 0.30
RI/BMR-O, w/RI=1 0.937 0.002 0.853 0.57
w/oRI =1 0.970 0.003 0.912 0.37

*In all tests of association between RI and primate traits, regressions were performed with (w/) and without (w/o) RI =1

taxa if present in the data set.

BMR, basal metabolic rate (both body mass derived, BMR-BM, and in relation to oxygen consumed, BMR-O,).

Previously, we observed that RI=1 primates
skewed the results of relationships between primate
life-history characteristics because of their having
relatively larger bodies and brains and longer gesta-
tion and lactation lengths, etc., than generally
expected for their RI (Bromage et al., 2012) It was
argued that, to evolve the full spectrum of primate life
characterizing the primate order today, taxa evolved
HHO variability as the biological timing mechanism
by which life histories are regulated at larger body
masses. Because of this potential anomaly, we also
aimed to determine whether the results of tests of
relationships between tissue and organ masses might
differ when choosing only RI>2 taxa for analysis.
When controlling for the effects of either body mass or
fat-free body mass, we found that, as for previous
tests including RI = 1 taxa, few relationships between
variables were forthcoming.

Bromage etal. (2012) reported that ‘RI is a
response to an oscillation postulated by us to regulate
body mass, and through this relationship, much of the
life history matrix’ (p. 137). That RI loses wholesale
its relationships to life-history characteristics when
controlling for body mass is evidence that the HHO is
a key variable responsible for variation in body mass
and, with that result, variability in life history. The
importance of mass has been a major focus: ‘Such
covariation (between life history characteristics)
implies that all life histories may be determined by
some key variable. Many possibilities have been sug-
gested, including brain size, metabolic rate, and even
an elusive “periodengeber” which entrains the timing
of life history events to body weight’ (p. 23; parenthe-
ses and italics ours). We highlight the latter part of
this quote, and claim that the HHO is the elusive
‘periodengeber’. As explained previously (Bromage
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Table 5. Primate tissue, organ, and body masses, as well as basal metabolic rate (BMR), from Table 2 are sorted into
arbitrary groups with slopes below 0.25, slopes of 0.25-0.29, and slopes of 0.30 and higher

Relationships with slopes below 0.25

Relationships with slopes of 0.25-0.29

Relationships with slopes of 0.30
and above

RI/Digestive tract mass (g) = 0.23
RI/Stomach mass (g) = 0.20
RI/Intestinal mass (g) = 0.23
RI/Lung mass (g) = 0.24
RI/Spleen mass (g) = 0.19
RI/Adipose depot (g) = 0.23

Mean slope = 0.22

RI/Body mass (g) = 0.27
RI/Fat-free body mass (g) = 0.26
RI/Heart mass (g) = 0.28
RI/Kidney mass (g) = 0.28
RI/Liver mass (g) = 0.25
RI/Visceral mass (g) = 0.25
Mean slope = 0.27

RI/Brain mass (g) = 0.31
RI/BM BMR = 0.30
RI/BMR (mL O, h™) = 0.37

BMR, basal metabolic rate (both body mass derived, BMR-BM, and in relation to oxygen consumed, BMR-O,); RI, repeat

interval.

et al., 2012), ‘... we conjecture that (hypothalamic
nuclei) transmit signals ... to regulate body mass
and, through the set of SCN-integrated hypothalamic
nuclei, to regulate life history . . . This is the basis for
covariation of life history characteristics ... (p. 142).

However, apart from its hypothesized hypothalamic
regulation of life history, what has not been properly
discussed is how life-history variability and
covariation would manifest through the control of
body mass by HHO. This topic requires dedicated
review but, for consideration here, we offer the fol-
lowing loosely formulated relationships in respect of
each primate life-history characteristic: gestation
length and lactation length are a function of the mass
of the mother and are coupled by metabolic rate-
dependent energy allocations to offspring (Dubman,
Collard & Mooers, 2012); age at sexual maturity (and
we presume age at first breeding) depends upon
having reached a body mass able to metabolically
support a foetus to full term (adolescent subfecundity
acknowledged) at an age linked to extrinsic mortality
risk (Ricklefs, 2010); interbirth interval, in a finite
metabolic model, depends upon the duration of the
recouping period and the return of metabolic balance
and, because BMR depends upon mass, so does
interbirth interval — the mass dependence of primate
interbirth interval has been long examined (Harvey,
Clutton-Brock & Martin, 1987), although brain size in
a study of New World monkeys has also been impli-
cated (Fedigan & Rose, 1995); lifespan is a function of
rates of cell proliferation known to regulate longevity
(Magalhdes & Faragher, 2008) and mass-dependent
extrinsic mortality risk (Ricklefs, 2010). In sum, body
mass is a function of cell proliferation rates and,
because these rates are a direct expression of the pace
of life history, we find this consistent with the hypoth-
esis recently set forth, namely that the HHO regu-
lates cell proliferation rate rhythms, which build
mass in appropriate units of time across the life-
history continuum (Bromage et al., 2012).

In their evaluation of the ‘expensive tissue hypoth-
esis’ previously advanced by Aiello & Wheeler (1995),
Navarrete et al. (2012) hypothesized that, during the
course of primate evolution, the digestive tract, which
has a relatively high mass-specific metabolic rate,
diminished in proportion to body mass to provide a
finite energetic trade-off in support of the develop-
ment and function of a relatively larger brain,
another such ‘expensive’ tissue. However, Navarrete
et al. (2012) failed to find the expected negative rela-
tionship between the size of the digestive tract and
brain size when controlling for fat-free body mass.
Instead, they found that the adipose depot and brain
size were negatively correlated, indicating that the
degree of encephalization and adiposity are compen-
satory strategies to buffer against starvation.

Slopes of the regressions of RI with body and tissue
masses shed additional light on the scaling relation-
ships among covarying body mass characteristics
(which has consequence for life history). The slope
arithmetic mean for body and tissue masses RI > 2 is
0.25, equal to the slope with 1/4 power that typifies
some relationships between life-history characteris-
tics and body size. However, body and tissue masses
from Table 2 can be sorted into arbitrary groups with
slopes below 0.25 (spleen, stomach, adipose depot,
digestive tract, intestinal, lung), with slopes of 0.25—
0.29 (liver, viscera, fat-free body, body, heart, kidney),
and with slopes of 0.30 and higher (brain, BMR)
(Table 5). Body mass and most tissue masses approxi-
mate 1/4 scaling. However, brain mass has a singu-
larly high slope in relation to RI, meaning that, as
body and most tissue masses increase, brain tissue
increases relatively faster. ‘Payment’ for this in a
finite energetic model would require some tissue
masses to increase more slowly relative to body size,
such as those in the arbitrary group with slopes below
0.25. We are thus led to consider that, when assessed
in relationship with HHO metabolic rhythms regulat-
ing body mass and governing life history, both the

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 649-656



656 T. G. BROMAGE and M. N. JANAL

digestive tract and the adipose depot scale in a
manner consistent with the expensive tissue
hypothesis.

The high slopes of RI regressed against metabolic
rate suggest that the finite energetic model must be
amended to allow for increased consumption, and/or
changes to metabolic efficiency, and/or changes to the
way that energy is allocated at larger body sizes. Our
previous work on RI in relation to primate life-history
traits provides clear evidence indicating that a
slowing down of the pace of life history reflects a
primate metabolic adaptation at increased body size.
For example, gestation length, age at first breeding,
and interbirth interval all have remarkably high
slopes of 0.50 and greater (Bromage et al., 2012),
suggesting that primates space their production
energy over increasingly longer periods of time as
primate taxa increase the length of their HHO bio-
logical timing and body size.

CONCLUSIONS

We conclude that primate RI, which is a manifesta-
tion of the HHO, is highly and significantly related to
body mass, as well as to the constituent tissue and
organ masses that make up the body. We suggest that
the HHO among primates is a metabolic rhythm
controlling the pace of development and life history
through its primary function to accrue adult body
mass.

The relatively slow growth of many tissues, organs,
and body masses with increasing RI suggests that it
would be rewarding to investigate why primate bodies
are so small relative to their brains versus the almost
universal effort presently undertaken to explain why
their brains are so large in relation to body size.

ACKNOWLEDGEMENTS

Research support was provided by the 2010 Max
Planck Research Award to TGB, endowed by the
German Federal Ministry of Education and Research
to the Max Planck Society and the Alexander von
Humboldt Foundation in respect of the Hard Tissue
Research Program in Human Paleobiomics. Aspects of
this study were also supported by National Science
Foundation grants in aid of research to TGB (BCS-
1062680). Many thanks to Alexandra Houssaye and to
Dorota Konietzko-Meier for their invitation to present
this paper at the symposium, ‘New advances in
paleohistological studies’, held at the 10th Interna-

tional Congress of Vertebrate Morphology held in
Barcelona, 8-12 July 2013.

REFERENCES

Aiello LC, Wheeler P. 1995. The expensive-tissue hypoth-
esis: the brain and the digestive system in human and
primate evolution. Current Anthropology 36: 199-221.

Bromage TG, Hogg RT, Lacruz RS, Hou C. 2012. Primate
enamel evinces long period biological timing and regulation
of life history. Journal of Theoretical Biology 305: 131-144.

Bromage TG, Lacruz RS, Hogg R, Goldman HM,
McFarlin SC, Warshaw J, Dirks W, Perez-Ochoa A,
Smolyar I, Enlow DH, Boyde A. 2009. Lamellar bone is
an incremental tissue reconciling enamel rhythms, body
size, and organismal life history. Calcified Tissue Interna-
tional 84: 388—404.

Calder WA. 1996. Size, function, and life history. Mineola,
NY: Dover Publications, Inc.

Dubman E, Collard M, Mooers A@. 2012. Evidence that
gestation duration and lactation duration are coupled traits
in primates. Biology Letters 8: 998-1001.

Fedigan LM, Rose LM. 1995. Interbirth interval variation
in three sympatric species of neotropical monkey. American
Journal of Primatology 37: 9-24.

Halberg F, Engell M, Hamburger C, Hillman D. 1965.
Spectral small-amplitude
rhythms in excreted ketosterold; probable androgen-induced
circaseptan desynchronization. Acta Endocrinologica 103
Suppl.: 1-54.

Harvey PH, Clutton-Brock TH. 1985. Life history variation
in primates. Evolution 39: 559-581.

Harvey PH, Clutton-Brock TH, Martin RD. 1987. Life
histories in comparative perspective. In: Smuts BB, Cheney
DL, Seyfarth RM, Warnham RW, Struhsaker TT, eds.
Primate societies. Chicago, IL: University of Chicago Press,
181-196.

Havers C. 1691. Osteologia nova, or some new observations of

resolution of low-frequency,

the bones, and the parts belonging to them, with the manner
of their accretion and nutrition. London: Samuel Smith.
Magalhaes JPD, Faragher RGA. 2008. Cell divisions and
mammalian aging: integrative biology insights from genes
that regulate longevity. BioEssays: news and reviews in
molecular, cellular and developmental biology 30: 567-578.
Navarrete A, Schaik CPV, Isler K. 2012. Energetics and
the evolution of human brain size. Nature 480: 91-94.
Ricklefs RE. 2010. Life-history connections to rates of aging
in terrestrial vertebrates. Proceedings of the National
Academy of Sciences of the United States of America 107:
10314-10319.
Schmidt-Nielsen K. 1984. Scaling: why is animal size so
important? Cambridge: Cambridge University Press.

© 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 649-656



